Supporting Interactive Sequential Pattern Discovery in Databases
نویسنده
چکیده
One of the most important data mining problems is discovery of sequential patterns. Sequential pattern mining consists in discovering all frequently occurring subsequences in a collection of data sequences. This paper discusses several issues concerning possible extensions to traditional database management systems required to support sequential pattern discovery: a sequential pattern query language for specifying mining tasks and storing discovered patterns in the database, techniques of integrating various pattern constraints that can be specified in mining queries into the mining process in order to improve performance, and a framework for exploiting cached results of previous queries to support iterative and interactive data mining. The paper summarizes the author’s recent research on the above topics.
منابع مشابه
Methods for the Efficient Discovery of Large Item-Indexable Sequential Patterns
An increasingly relevant set of tasks, such as the discovery of biclusters with order-preserving properties, can be mapped as a sequential pattern mining problem on data with item-indexable properties. An item-indexable database, typically observed in biomedical domains, does not allow item repetitions per sequence and is commonly dense. Although multiple methods have been proposed for the effi...
متن کاملOn Interactive Pattern Mining from Relational Databases
In this paper we present ConQueSt, a constraint based querying system devised with the aim of supporting the intrinsically exploratory (i.e., human-guided, interactive, iterative) nature of pattern discovery. Following the inductive database vision, our framework provides users with an expressive constraint based query language which allows the discovery process to be effectively driven toward ...
متن کاملDoes Fundraising Have Meaningful Sequential Patterns? The Case of Fintech Startups
Nowadays, fundraising is one of the most important issues for both Fintech investors and startups. The pattern of fundraising in terms of “number and type of rounds and stages needed” are important. The diverse features and factors that could stem from Fintech business models which can influence success are of the key issues in shaping these patterns. This study applied the top 100 KPMG Fintech...
متن کاملInteractive sequence discovery by incremental mining
Sequential pattern mining has become a challenging task in data mining due to its complexity. Essentially, the mining algorithms discover all the frequent patterns meeting the user specified minimum support threshold. However, it is very unlikely that the user could obtain the satisfactory patterns in just one query. Usually the user must try various support thresholds to mine the database for ...
متن کاملApproaches for Pattern Discovery Using Sequential Data Mining
In this chapter we first introduce sequence data. We then discuss different approaches for mining of patterns from sequence data, studied in literature. Apriori based methods and the pattern growth methods are the earliest and the most influential methods for sequential pattern mining. There is also a vertical format based method which works on a dual representation of the sequence database. Wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003